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Introduction

Introduction

In this section, we assume that we have actually successfully conducted a completely
randomized, independent sample experiment resulting in two groups of scores.
The null hypothesis is that, in the populations these two samples represent, the
populations means are equal.
The common statistical assumption is that the populations are also normally distributed
and have equal variance.
The null hypothesis is usually expressed as

H0 : µ1 = µ2 (1)

More generally, you might write it as

H0 : µ1 − µ2 = κ0 (2)

where κ0 is usually zero, but may also represent some target value for the mean difference.
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Introduction

Introduction

In this module, we review two classic approaches to testing this hypothesis.
1 The 2-sample,independent sample t-test. This is the method you probably saw as an

undergraduate.
2 Fitting a regression model and performing an analysis of variance. You may have seen this

method, but may have been taught that it is a special case of a statistical method called
“Analysis of Variance,” without being told that the analysis of variance is actually linear
regression.

We begin by reviewing the classic t-test, and then move on to discuss the regression
approach.

James H. Steiger (Vanderbilt University) Regression and the 2-Sample t 4 / 44



The 2-Sample Student t Test

The 2-Sample Student t Test

The t-test is calculated as

tn1+n2−2 =
Y •1 − Y •2 − κ0√

w σ̂2
(3)

where κ0 is the null-hypothesized value of µ1 − µ2, almost always zero and hence often
omitted,

w =
1

n1
+

1

n2
=

n1 + n2

n1n2
(4)

and

σ̂2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
(5)

If the null hypothesis is true, under the assupmptions of the test, the statistic has a
Student t distribution with n1 + n2 − 2 degrees of freedom.
Let’s look at a quick example, first using hand computation (with the assistance of R),
then using a slightly more general approach commonly used in R.
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The 2-Sample Student t Test

The 2-Sample Student t Test

Suppose we have a simple data set in which we have only 5 observations in Group 1 and 6
in Group 2.
Here are the data.

> Group.1 <- c(102,131,119,109,111)

> Group.2 <- c(104,98,110,119,99,88)

On the next slide we’ll process the formula from Equation 3.
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The 2-Sample Student t Test

The 2-Sample Student t Test

> numerator <- mean(Group.1) - mean(Group.2)

> n.1 <- length(Group.1)

> n.2 <- length(Group.2)

> w <- (1/n.1 + 1/n.2)

> df <- n.1 + n.2 -2

> sigma.hat.squared <- ((n.1-1) * var(Group.1) +

+ (n.2-1)*var(Group.2) )/df

> t <- numerator/sqrt(w*sigma.hat.squared)

> t

[1] 1.73214

The value of 1.73 is well below the critical value required for rejection.
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The 2-Sample Student t Test

The 2-Sample Student t Test

A quicker way is to use a built-in function in R.

> t.test(Group.1, Group.2, var.equal=TRUE, paired=FALSE)

Two Sample t-test

data: Group.1 and Group.2

t = 1.7321, df = 9, p-value = 0.1173

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.488287 26.288287

sample estimates:

mean of x mean of y

114.4 103.0

Reassuringly, we get the same result. Notice that this procedure also automatically returns a
95% confidence interval on the quantity µ1 − µ2, calculated as

Y •1 − Y •2 ± t∗.975,n1+n2−2

√
w σ̂2
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A Regression Modeling Approach Nested Models

A Regression Modeling Approach
Nested Models

In the previous section, we showed how to compare two means with the classic t-statistic.
Another way of thinking about the same statistical test is that comparing two means
involves comparing two nested regression models.

1 One model reproduces the data for both groups from a single mean.
2 The second, more complex model, says that the two groups may have unequal means.
3 Via regression analysis, we compare these two nested models.
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A Regression Modeling Approach Nested Models

A Regression Modeling Approach
Nested Models

But what exactly are nested models?
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A Regression Modeling Approach When are Models Nested?

A Regression Modeling Approach
When are Models Nested?

One model is nested within another if it can be expressed as a special case of the other in
which the parameters of the second are constrained versions of the parameters of the first.
For example, consider two regression models, E (Y |X = x) = β1x + β0, and
E (Y |X = x) = β0.
The second model is nested within the first because it is a special case of the first model
in which β1 is constrained to be zero.
If a model stays the same except for some parameters that are dropped, the simpler
model is generally nested within the more complex version.
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A Regression Modeling Approach When are Models Nested?

A Regression Modeling Approach
When are Models Nested?

It turns out, there is a simple, general procedure for comparing any two nested regression
models with each other.
As we begin this discussion, I want to draw your attention to something.
When two models are nested, the more complex model always fits the data in the sample
(or the variables in the population) at least as well as the less complex model, in the
sense that the sum of squared errors will be at least as small and almost always smaller.

Why?
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A Regression Modeling Approach A Model Comparison F -Test for Nested Models

A Regression Modeling Approach
A Model Comparison F -Test for Nested Models

Let’s define and plot some artificial data on two variables.

> set.seed(12345)

> x <- rnorm(25)

> e <- rnorm(25,0,sqrt(1/2))

> y <- sqrt(1/2)*x + e

> plot(x,y)
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A Regression Modeling Approach A Model Comparison F -Test for Nested Models

A Regression Modeling Approach
A Model Comparison F -Test for Nested Models

We want to predict y from x using least squares linear regression.
We seek to fit a model of the form

yi = β0 + β1xi + ei = ŷi + ei

while minimizing the sum of squared errors in the “up-down” plot direction.
As usual, we fit such a model in R by creating a “fit object” and examining its contents.
We see that the formula for ŷi is a straight line with slope β1 and intercept β0.
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A Regression Modeling Approach A Model Comparison F -Test for Nested Models

A Regression Modeling Approach
A Model Comparison F -Test for Nested Models

We create a representation of the model with a model specification formula.
As we noted before, the formula corresponds to the model stated on the previous slide in
a specific way:

1 Instead of an equal sign, a “∼”is used.
2 The coefficients themselves are not listed, only the predictor variables.
3 The error term is not listed
4 The intercept term generally does not need to be listed, but can be listed with a “1”.

So the model on the previous page is translated as y ~ x.
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A Regression Modeling Approach A Model Comparison F -Test for Nested Models

A Regression Modeling Approach
A Model Comparison F -Test for Nested Models

We create the fit object as follows.

> fit.A <- lm(y ~ x)

Once we have created the fit object, we can examine its contents.
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A Regression Modeling Approach A Model Comparison F -Test for Nested Models

A Regression Modeling Approach
A Model Comparison F -Test for Nested Models

> summary(fit.A)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-1.8459 -0.6692 0.2133 0.5082 1.2330

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2549 0.1754 1.453 0.159709

x 0.8111 0.1894 4.282 0.000279 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8771 on 23 degrees of freedom

Multiple R-squared: 0.4435, Adjusted R-squared: 0.4193

F-statistic: 18.33 on 1 and 23 DF, p-value: 0.0002791
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A Regression Modeling Approach A Model Comparison F -Test for Nested Models

A Regression Modeling Approach
A Model Comparison F -Test for Nested Models

As before, we see the printed coefficients for the intercept and for x .
There are statistical t tests for each coefficient. These are tests of the null hypothesis
that the coefficient is zero.
There is also a test of the hypothesis that the squared multiple correlation (the square of
the correlation between ŷ and y) is zero.
Standard errors are also printed, so you can compute confidence intervals. (How would
you do that quickly “in your head?” (C.P.)
The intercept is not significantly different from zero. Does that surprise you? (C.P.)
The squared correlation is .4435. What is the squared correlation in the population?
(C.P.)
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A Regression Modeling Approach A Model Comparison F -Test for Nested Models

A Regression Modeling Approach
A Model Comparison F -Test for Nested Models

Let’s add a red best-fitting straight line.

> plot(x,y)

> abline(fit.A,col='red')
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A Regression Modeling Approach A Model Comparison F -Test for Nested Models

A Regression Modeling Approach
A Model Comparison F -Test for Nested Models

If we have more than one predictor, we have a multiple regression model.
Suppose, for example, we add another predictor w to our artificial data set.
We design this predictor to be completely uncorrelated with the other predictor and the
criterion, so this predictor is, in the population, of no value.
We do this by making this new predictor, w , a set of random numbers.

> w <- rnorm(25)

Now our model becomes
yi = β0 + β1xi + β2wi + ei
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A Regression Modeling Approach A Model Comparison F -Test for Nested Models

A Regression Modeling Approach
A Model Comparison F -Test for Nested Models

How do we compare this new model, with an added predictor variable w , with the old
model?
Notice that the old model, with predictor variable x , is nested within the new model,
which has predictor variables x and w .
In such a situation, we can perform a generalized hierarchical F test.
To begin with, we can ask a simple question.
How would we specify and fit the model

yi = β0 + β1xi + β2wi + ei

in R?
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A Regression Modeling Approach A Model Comparison F -Test for Nested Models

A Regression Modeling Approach
A Model Comparison F -Test for Nested Models

That’s right,

> fit.B <- lm(y ~ x + w)

> summary(fit.B)

Call:

lm(formula = y ~ x + w)

Residuals:

Min 1Q Median 3Q Max

-1.8475 -0.6693 0.2198 0.5108 1.2298

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.254043 0.181833 1.397 0.176312

x 0.812727 0.202128 4.021 0.000573 ***

w 0.004366 0.152239 0.029 0.977380

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8968 on 22 degrees of freedom

Multiple R-squared: 0.4435, Adjusted R-squared: 0.393

F-statistic: 8.768 on 2 and 22 DF, p-value: 0.001584
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A Regression Modeling Approach A Model Comparison F -Test for Nested Models

A Regression Modeling Approach
A Model Comparison F -Test for Nested Models

We have fit this newer, more complex model and we can of course examine its coefficients
and the associated statistical tests.
We saw earlier that this new model must have a smaller sum of squared errors than
Model A in the sample.
But can we reject the null hypothesis that Model B is actually no better than Model A in
the population?
On the next slide, we describe a general procedure that has far-reaching implications.
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A Regression Modeling Approach Partial F -Tests: A General Approach

A Regression Modeling Approach
Partial F -Tests: A General Approach

Suppose Model B includes Model A as a special case. That is, Model A is a special case
of Model B where some terms have coefficients of zero. Then Model A is nested within
Model B.
We define RSSb to be the sum of squared residuals for Model B, RSSa the sum of squared
residuals for Model A.
Since Model A is a special case of Model B, model B is more complex so RSSa will always
be as least as large as RSSb.
We define dfb to be n − pb, where pb is the number of regressors in Model B including
the intercept, and correspondingly dfa = n − pa.
Then, to compare Model B against Model A, we compute the partial F−statistic as
follows.

Fdfa−dfb,dfb =
MScomparison

MSres
=

(RSSa − RSSb)/(pb − pa)

RSSb/dfb
(6)
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A Regression Modeling Approach Partial F -Tests: A General Approach

A Regression Modeling Approach
Partial F -Tests: A General Approach

That seems like a lot, but it is really rather simple.
The F is the ratio of two mean squares.
The numerator is the the difference between the sum of squares divided by the difference
in degrees of freedom (or, alternatively, the difference in the number of regressor terms).
The denominator is the sum of squares for the more complex (better fitting) model
divided by its degrees of freedom.
The calculations are not quite as hard as they seem at first glance.
In any case, we can relax! R is going to do this for you automatically with its anova

command.
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A Regression Modeling Approach Partial F -Tests: A General Approach

A Regression Modeling Approach
Partial F -Tests: A General Approach

> anova(fit.A,fit.B)

Analysis of Variance Table

Model 1: y ~ x

Model 2: y ~ x + w

Res.Df RSS Df Sum of Sq F Pr(>F)

1 23 17.694

2 22 17.693 1 0.00066144 8e-04 0.9774
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A Regression Modeling Approach Partial F -Tests: A General Approach

A Regression Modeling Approach
Partial F -Tests: A General Approach

Line 2 of the output gives the F -test for comparing Model B with Model A.
Notice that the p value is 0.974, the same as the p value for the regression coefficient
attached to w in the previous output.
We cannot reject the null hypothesis that the two models fit equally well, so we do not
have sufficient information to declare that the regression coefficient for w , when it is
added to the model, is non-zero.
This might make it seem that the anova F statistic is superfluous, in that one can obtain
similar information from the Wald test on the regression coefficient.
In general, though, the anova test proves to be very valuable, because while the t test
only works for a single parameter, the anova test can be used to compare models that
differ by several parameters.
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A Regression Modeling Approach Partial F -Tests: A General Approach

A Regression Modeling Approach
Partial F -Tests: A General Approach

What happens if we apply the anova function to a single model with 2 predictors?

> anova(fit.B)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 14.1025 14.1025 17.5352 0.0003817 ***

w 1 0.0007 0.0007 0.0008 0.9773798

Residuals 22 17.6933 0.8042

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Automatically, the command runs a sequence of tests. It adds the terms in the regression
equation one at a time, each time computing a difference test.
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A Regression Modeling Approach Partial F -Tests: A General Approach

A Regression Modeling Approach
Partial F -Tests: A General Approach

That’s really cool — can save a huge amount of work.
But what happens if we call the anova command with just a single model with a single
predictor? Will the command choke? It seems like there is nothing to compare.

> anova(fit.A)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 14.102 14.1025 18.331 0.0002791 ***

Residuals 23 17.694 0.7693

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The function did not choke. But what happened?
Note that the p-value for this test is the same as the p-value for the overall test of zero
squared multiple correlation shown in the output summary for fit.A.
What is going on?
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A Regression Modeling Approach Partial F -Tests: A General Approach

A Regression Modeling Approach
Partial F -Tests: A General Approach

> summary(fit.A)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-1.8459 -0.6692 0.2133 0.5082 1.2330

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2549 0.1754 1.453 0.159709

x 0.8111 0.1894 4.282 0.000279 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8771 on 23 degrees of freedom

Multiple R-squared: 0.4435, Adjusted R-squared: 0.4193

F-statistic: 18.33 on 1 and 23 DF, p-value: 0.0002791
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A Regression Modeling Approach Partial F -Tests: A General Approach

A Regression Modeling Approach
Partial F -Tests: A General Approach

To demonstrate, let’s fit a model with just an intercept.

> fit.0 <- lm(y ~ 1)

Recall that the 1 in the model formula stands for the intercept.
Now let’s explicitly perform a partial F -test comparing fit.0 with fit.A.
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A Regression Modeling Approach Partial F -Tests: A General Approach

A Regression Modeling Approach
Partial F -Tests: A General Approach

Notice that we get essentially the same result as when we simply applied the anova function
to the fit.A object.

> anova(fit.0,fit.A)

Analysis of Variance Table

Model 1: y ~ 1

Model 2: y ~ x

Res.Df RSS Df Sum of Sq F Pr(>F)

1 24 31.796

2 23 17.694 1 14.102 18.331 0.0002791 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

James H. Steiger (Vanderbilt University) Regression and the 2-Sample t 32 / 44



A Regression Modeling Approach Partial F -Tests: A General Approach

A Regression Modeling Approach
Partial F -Tests: A General Approach

In a roundabout way, we’ve shown that the standard F -test that R2 = 0 (or that β1 = 0)
computed on a model with a single regressor variable is actually a test comparing two
models.
The simpler model (hidden “behind the scenes” with standard procedures) has just an
intercept.
The more complex model adds a single regressor.
Now we show how this F -test is equivalent to the t-test of equal means.

James H. Steiger (Vanderbilt University) Regression and the 2-Sample t 33 / 44



A Regression Modeling Approach Setting Up The Data

A Regression Modeling Approach
Setting Up The Data

Recall our earlier simple data sets

> Group.1 <- c(102,131,119,109,111)

> Group.2 <- c(104,98,110,119,99,88)
Two set these data up for analysis using the regression approach, we need to do two
things:

1 Concatenate the data to produce one long vector of scores.
> Score <- c(Group.1, Group.2)

2 Create a binary “dummy variable” called Group that is coded 1 if the person is in Group 1
and 0 if the person is in Group 2.
> Group <- c(rep(1,5),rep(0,6))
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A Regression Modeling Approach Setting Up The Data

A Regression Modeling Approach
Setting Up The Data

Optionally, you can place the data into a dataframe. Here is what the data look like.

> t.data <- data.frame(Group,Score)

> t.data

Group Score

1 1 102

2 1 131

3 1 119

4 1 109

5 1 111

6 0 104

7 0 98

8 0 110

9 0 119

10 0 99

11 0 88
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A Regression Modeling Approach Analyzing the Regression Model

A Regression Modeling Approach
Analyzing the Regression Model

Now let’s revisit the regression model.
We’re going to discover that when a binary dummy variable is used, a regression model
takes on some interesting new characteristics.
Model A in our case has only an intercept. And all the data are in just one column.
The model can be expressed as

E (Y ) = β0 (7)

and
Var(Y ) = σ2 (8)

because there is no X !
In other words, Model A says that all observations, regardless of their group, have a mean
β0 and a variance σ2.
Equal means, equal variances. Does that sound familiar?
It should, because that is the model for the null hypothesis in the two sample,
independent sample t test.
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A Regression Modeling Approach Analyzing the Regression Model

A Regression Modeling Approach
Analyzing the Regression Model

Now we add the Group variable as a predictor.
The model might be written

E (Y |Group = x) = β0 + β1x (9)

and
Var(Y |Group = x) = σ2 (10)

However, because X takes on only the values 1 and 0, we can see that actually, the above
model represents two “group-specific” models.
As before, both groups have variances of σ2.
But consider the model for E (Y |Group = x). Since Group takes on only two values, the
model of Equation 9 can be written

E (Y |Group = 0) = β0

E (Y |Group = 1) = β0 + β1
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A Regression Modeling Approach Analyzing the Regression Model

A Regression Modeling Approach
Analyzing the Regression Model

We see then, that Model B allows Group 2 (x = 0) to have a mean of β0, and Group 1
(x = 1) to have a mean of β0 + β1.
If we can reject Model A in favor of more complex Model B, this is the same as rejecting
the null hypothesis of equal means.
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A Regression Modeling Approach
Analyzing the Regression Model

Let’s compare the two models.

> fit.A <- lm(Score ~ 1)

> fit.B <- lm(Score ~ 1 + Group)

> anova(fit.A,fit.B)

Analysis of Variance Table

Model 1: Score ~ 1

Model 2: Score ~ 1 + Group

Res.Df RSS Df Sum of Sq F Pr(>F)

1 10 1417.6

2 9 1063.2 1 354.44 3.0003 0.1173

The F statistic is 3.00 with 1 and 9 degrees of freedom.
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A Regression Modeling Approach Analyzing the Regression Model

A Regression Modeling Approach
Analyzing the Regression Model

One fact discussed in introductory courses is that the square of a t statistic with ν
degrees of freedom has an F distribution with 1 and ν degrees of freedom.
Conversely, if we take the square root of the F statistic of 3.00, we obtain the absolute
value of a t statistic.
Notice that the square root of the F value of 3.00 obtained here is equal to of 1.73 we
obtained earlier.
If we look at the summary output for Model B, we see that the t statistic for the null
hypothesis that β1 = 0 is identical to the t statistic obtained earlier.
That is, of course, because β1 = 0 in our setup if and only if the two groups have equal
means. The β1 coefficient represents µ1 − µ2 in our setup.
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A Regression Modeling Approach
Analyzing the Regression Model

> summary(fit.B)

Call:

lm(formula = Score ~ 1 + Group)

Residuals:

Min 1Q Median 3Q Max

-15.0 -5.2 -3.4 5.8 16.6

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 103.000 4.437 23.213 2.43e-09 ***

Group 11.400 6.581 1.732 0.117

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.87 on 9 degrees of freedom

Multiple R-squared: 0.25, Adjusted R-squared: 0.1667

F-statistic: 3 on 1 and 9 DF, p-value: 0.1173
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A Regression Modeling Approach
An Easy Confidence Interval on the Mean Difference

A common analysis done in conjunction with the t-test is to construct a confidence
interval on the quantity µ1 − µ2.
Do you see a simple way to obtain a confidence interval on one of the above quantity
from the output from summary(fit.B)?
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A Regression Modeling Approach
An Easy Confidence Interval on the Mean Difference

If you look at β1 carefully, you will see that it actually represents µ1 − µ2, because it
represents the amount that must be added to µ2 to model µ1 correctly.
Consequently, a confidence interval on β1 is a confidence interval on µ1 − µ2.
You can obtain such confidence intervals calculated precisely by using the confint

function.
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A Regression Modeling Approach
An Easy Confidence Interval on the Mean Difference

> confint(fit.B)

2.5 % 97.5 %

(Intercept) 92.962319 113.03768

Group -3.488287 26.28829
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